🎈 Streamlit: The Complete Beginner's Guide

What is Streamlit?

Streamlit is an open-source Python library that makes it easy to create custom web apps for machine learning and data science. It turns data scripts into shareable web apps in minutes, not weeks.

Key Points:

  • Created specifically for data scientists and ML engineers
  • No front-end experience required
  • Runs on pure Python
  • Interactive by default
  • Auto-updates on code changes

Simple Streamlit App Structure:


import streamlit as st
import pandas as pd

st.title('My First Streamlit App')
st.write('Hello, World!')

# Load some data
data = pd.DataFrame({
    'x': [1, 2, 3, 4],
    'y': [10, 20, 30, 40]
})

# Create a chart
st.line_chart(data)
                    

Key Features

📊 Data Display

  • Tables, charts, and metrics
  • Interactive plots
  • Custom visualizations
  • Markdown support

🎛️ Widgets

  • Buttons and sliders
  • Input fields
  • File uploaders
  • Progress bars

📱 Layout & Styling

  • Columns and containers
  • Sidebars
  • Custom themes
  • Responsive design

🚀 Advanced Features

  • Caching
  • Session state
  • Component system
  • Authentication

Getting Started

Installation

pip install streamlit

Create Your First App


# Save as app.py
import streamlit as st

st.title('Hello Streamlit!')
name = st.text_input('Enter your name')
if name:
    st.write(f'Hello {name}!')
                    

Run Your App

streamlit run app.py

Basic Commands:

  • st.write() - Write text/data
  • st.markdown() - Format text
  • st.sidebar - Add sidebar elements
  • st.button() - Create buttons
  • st.plotly_chart() - Display Plotly charts

Example Applications

Data Explorer


import streamlit as st
import pandas as pd
import plotly.express as px

st.title('Data Explorer')

# File uploader
uploaded_file = st.file_uploader("Choose a CSV file")
if uploaded_file is not None:
    # Load data
    df = pd.read_csv(uploaded_file)

    # Show data
    st.write("### Data Preview")
    st.write(df.head())

    # Plot
    col = st.selectbox("Select column to plot", df.columns)
    fig = px.histogram(df, x=col)
    st.plotly_chart(fig)
                    

ML Model Dashboard


import streamlit as st
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

st.title('Iris Flower Classifier')

# Load data
iris = load_iris()
model = RandomForestClassifier()
model.fit(iris.data, iris.target)

# Input features
st.sidebar.header('Input Parameters')
sepal_length = st.sidebar.slider('Sepal length', 4.0, 8.0, 5.0)
sepal_width = st.sidebar.slider('Sepal width', 2.0, 5.0, 3.0)
petal_length = st.sidebar.slider('Petal length', 1.0, 7.0, 4.0)
petal_width = st.sidebar.slider('Petal width', 0.1, 2.5, 1.0)

# Prediction
prediction = model.predict([[
    sepal_length, sepal_width, 
    petal_length, petal_width
]])
st.write('### Prediction:', iris.target_names[prediction[0]])
                    

Pros and Cons

✅ Advantages

  • Very quick to prototype
  • Python-only, no web dev needed
  • Great documentation
  • Active community
  • Easy deployment
  • Built-in caching
  • Real-time updates
  • Perfect for data apps

⚠️ Limitations

  • Limited customization
  • Not for complex web apps
  • Performance can be slow
  • Limited layout options
  • Mobile support is basic
  • Not suitable for production apps
  • Memory management issues
  • Limited state management

Best Use Cases:

  • Data visualization dashboards
  • ML model demos
  • Data exploration tools
  • Internal tools
  • Quick prototypes
  • Educational content